Host-jumping, demographic stochasticity and extinction: lytic viruses
نویسندگان
چکیده
Question: We envision a lytic virus invading a novel-host population, when rarity of productive infections suggests a role for demographic stochasticity. We ask how functionally constrained viral trait combinations that reduce the chance of extinction (promoting invasion) might differ from traits increasing the expected growth rate of the viral population. Mathematical methods: To focus on random variation in viral reproduction (burst size), we develop a branching process and derive the probability generating function for the number of new infections per infection. The generating function permits comparison of the extinction probability and mean growth rate for any viral life history. Then we turn to random variation in viral generation length, which sums time spent as a free virion with time reproducing within a host. We simulate this process to compare extinction frequency and mean growth rate for different combinations of viral traits. Key assumptions: We assume infections are rare as invasion of the novel host begins, and neglect density dependence. We emphasize pleiotropic constraints, functional dependencies between viral traits governing quantity and quality of viral reproduction, and survival of free virions. Conclusions: When pleiotropic interaction affects the burst-size distribution, with generation time fixed, extinction-resistant phenotypes increase offspring quantity, at the expense of either increased error during replication or reduced survival outside of a host, compared with growthrate maximizing phenotypes. When pleiotropic interaction affects the random waiting time until lysis, extinction-resistant phenotypes delay lysis to gain either increased survival outside of hosts or larger bursts, at the expense of slower reproduction within hosts, compared with growth-rate maximizing phenotypes.
منابع مشابه
Phenotypic Stochasticity Protects Lytic Bacteriophage Populations from Extinction during the Bacterial Stationary Phase
It is generally thought that the adsorption rate of a bacteriophage correlates positively with fitness, but this view neglects that most phages rely only on exponentially growing bacteria for productive infections. Thus, phages must cope with the environmental stochasticity that is their hosts' physiological state. If lysogeny is one alternative, it is unclear how strictly lytic phages can surv...
متن کاملStochasticity and heterogeneity in host-vector models.
Demographic stochasticity and heterogeneity in transmission of infection can affect the dynamics of host-vector disease systems in important ways. We discuss the use of analytic techniques to assess the impact of demographic stochasticity in both well-mixed and heterogeneous settings. Disease invasion probabilities can be calculated using branching process methodology. We review the use of this...
متن کاملCan life history predict the effect of demographic stochasticity on extinction risk?
Demographic stochasticity is important in determining extinction risks of small populations, but it is largely unknown how its effect depends on the life histories of species. We modeled effects of demographic stochasticity on extinction risk in a broad range of generalized life histories, using matrix models and branching processes. Extinction risks of life histories varied greatly in their se...
متن کاملDensity-Dependent Demographic Variation Determines Extinction Rate of Experimental Populations
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to tes...
متن کاملSlowly replicating lytic viruses: pseudolysogenic persistence and within-host competition.
We study the population dynamics of lytic viruses which replicate slowly in dividing host cells within an organism or cell culture, and find a range of viral replication rates that allows viruses to persist, avoiding extinction of host cells or dilution of viruses at too rapid or too slow viral replication. For the within-host competition between viral strains with different replication rates, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015